论文标题

汤普森的猜想的常规半神经元素和渐近结果的性格界限

Character bounds for regular semisimple elements and asymptotic results on Thompson's conjecture

论文作者

Larsen, Michael, Taylor, Jay, Tiep, Pham

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

For every integer $k$ there exists a bound $B=B(k)$ such that if the characteristic polynomial of $g\in \operatorname{SL}_n(q)$ is the product of $\le k$ pairwise distinct monic irreducible polynomials over $\mathbb{F}_q$, then every element $x$ of $\operatorname{SL}_n(q)$ of support at least $B$ is the product of two conjugates of $g$. We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions $(p,q)$, in the special case that $n=p$ is prime, if $g$ has order $\frac{q^p-1}{q-1}$, then every non-scalar element $x \in \operatorname{SL}_p(q)$ is the product of two conjugates of $g$. The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源