论文标题
关于(2+1)维度的海森堡铁磁自旋方程的多螺旋溶液
On multi-soliton solutions to the Heisenberg ferromagnetic spin chain equation in (2+1)-dimensions
论文作者
论文摘要
本文集中在(2+1) - 维度模拟非线性波传播中的Heisenberg铁磁自旋链(HFSC)方程上。首先采用变量转换来减少研究的方程式。然后,通过分析简化方程的光谱问题,基于实际线路建立了相关的矩阵Riemann-Hilbert问题。结果,通过(对应于反射矩阵,求解获得的矩阵riemann-hilbert问题),以(2+1)维度中的HFSC方程为对应于无反射,并获取了一般的多 - 溶液。特别是,一单程和两螺旋溶液进行了图形方式进行分析。
This paper concentrates on the Heisenberg ferromagnetic spin chain (HFSC) equation in (2+1)-dimensions modelling nonlinear wave propagation in ferromagnetic spin chain. A variable transformation is first employed to reduce the studied equation. And then an associated matrix Riemann-Hilbert problem is built on the real line through analyzing spectral problem of the reduced equation. As a consequence, solving the obtained matrix Riemann-Hilbert problem with the identity jump matrix, corresponding to the reflectionless, the general multi-soliton solutions to the HFSC equation in (2+1)-dimensions are acquired. Specially, the one- and two-soliton solutions are worked out and analyzed graphically.