论文标题

Pidgeun:图形神经网络启用瞬态动力学通过全场测量对网络微电网进行预测

PIDGeuN: Graph Neural Network-Enabled Transient Dynamics Prediction of Networked Microgrids Through Full-Field Measurement

论文作者

Yu, Yin, Jiang, Xinyuan, Huang, Daning, Li, Yan

论文摘要

在存在干扰的情况下,出现了物理知识的动态图神经网络(Pidgeun),以准确,有效,健壮地预测微电网的非线性瞬态动力学。基于图形的Pidgeun结构提供了微电网拓扑的自然表示。 Pidgeun仅使用实际可测量的状态信息,使用时间延迟嵌入公式来充分再现系统动力学,从而避免了常规方法对内部动态状态(例如控制器)的依赖性。基于明智设计的消息传递机制,Pidgeun结合了两种物理知识的技术,以提高其预测性能,包括一种物理 - 数据输注方法来确定公共汽车之间的相互依存关系,以及尊重已知的物理定律的损失术语,即确保Kirchhoff定律,以确保模型的可靠性。广泛的测试表明,Pidgeun可以在长期的时间段内为非线性微电网提供准确且可靠的瞬态动力学预测。因此,Pidgeun为大规模网络微电网(NMS)建模提供了有效的工具,并具有潜在的应用程序,可用于实时应用中NMS稳定和弹性操作的预测性或预防性控制。

A Physics-Informed Dynamic Graph Neural Network (PIDGeuN) is presented to accurately, efficiently and robustly predict the nonlinear transient dynamics of microgrids in the presence of disturbances. The graph-based architecture of PIDGeuN provides a natural representation of the microgrid topology. Using only the state information that is practically measurable, PIDGeuN employs a time delay embedding formulation to fully reproduce the system dynamics, avoiding the dependency of conventional methods on internal dynamic states such as controllers. Based on a judiciously designed message passing mechanism, the PIDGeuN incorporates two physics-informed techniques to improve its prediction performance, including a physics-data-infusion approach to determining the inter-dependencies between buses, and a loss term to respect the known physical law of the power system, i.e., the Kirchhoff's law, to ensure the feasibility of the model prediction. Extensive tests show that PIDGeuN can provide accurate and robust prediction of transient dynamics for nonlinear microgrids over a long-term time period. Therefore, the PIDGeuN offers a potent tool for the modeling of large scale networked microgrids (NMs), with potential applications to predictive or preventive control in real time applications for the stable and resilient operations of NMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源