论文标题
薄弯曲量子井中的孔自旋Qubit
Hole spin qubits in thin curved quantum wells
论文作者
论文摘要
孔旋转量子位是可伸缩量子计算机的前线平台,因为它们具有较大的自旋轨道交互作用,可在低功率下实现超快全电动量子量控制。迄今为止,最快的旋转量子位是在驱动场与平滑方向对齐时的长量子点中定义的。但是,在这些系统中,量子的寿命受到电荷噪声的强烈限制,这是孔Qubits的主要问题。我们在这里提出了一种不同的,可扩展的Qubit设计,与平面CMOS技术兼容,该孔被限制在被硅包围的弯曲锗量子孔中。该设计充分利用了强孔的孔相互作用,同时抑制了各种配置的电荷噪声,从而实现了高度相干,超快的Qubit门。在这里,我们专注于Si/ge/Si弯曲量子,但我们的设计也适用于不同的半导体。令人惊讶的是,这些设备即使在横向电场的短量子点中也可以进行超快操作。这种额外的驾驶机制放松了苛刻的设计限制,并为在单个量子点中可靠接口旋转量值开辟了一种新方法。通过考虑最先进的高阻抗谐振器和现实的量子设计,我们估计了几百个MHz的相互作用强度,在很大程度上超过了旋转和光子的衰减速率。在孔旋转量子位中达到如此强大的耦合方案将是朝着遥远的量子位之间的高保真纠缠操作以及快速的单次读数之间的重要一步,并将为实现大规模半导体量子处理器的实现铺平道路。
Hole spin qubits are frontrunner platforms for scalable quantum computers because of their large spin-orbit interaction which enables ultrafast all-electric qubit control at low power. The fastest spin qubits to date are defined in long quantum dots with two tight confinement directions, when the driving field is aligned to the smooth direction. However, in these systems the lifetime of the qubit is strongly limited by charge noise, a major issue in hole qubits. We propose here a different, scalable qubit design, compatible with planar CMOS technology, where the hole is confined in a curved germanium quantum well surrounded by silicon. This design takes full advantage of the strong spin-orbit interaction of holes, and at the same time suppresses charge noise in a wide range of configurations, enabling highly coherent, ultrafast qubit gates. While here we focus on a Si/Ge/Si curved quantum well, our design is also applicable to different semiconductors. Strikingly, these devices allow for ultrafast operations even in short quantum dots by a transversal electric field. This additional driving mechanism relaxes the demanding design constraints, and opens up a new way to reliably interface spin qubits in a single quantum dot to microwave photons. By considering state-of-the-art high-impedance resonators and realistic qubit designs, we estimate interaction strengths of a few hundreds of MHz, largely exceeding the decay rate of spins and photons. Reaching such a strong coupling regime in hole spin qubits will be a significant step towards high-fidelity entangling operations between distant qubits, as well as fast single-shot readout, and will pave the way towards the implementation of a large-scale semiconducting quantum processor.