论文标题
Flatland的非扰动双复制
Non-perturbative Double Copy in Flatland
论文作者
论文摘要
我们在两个时空维度中得出了双副本的非扰动,拉格朗日级公式。我们的结果阐明了在广泛的标量理论中,双拷贝的现场理论基础,这些理论可以包括质量和高维操作员。直接推论是扰动理论中所有订单的振幅级别双复制。双副本应用于某些可集成的模型,定义了宽松连接,威尔逊线和无限塔之间的同构。我们还以分析和数值上的非扰动经典解决方案级别实现了双副本,并介绍了包括Moyal代数给出的固定较高尺寸校正的固定塔的双复制图的概括。
We derive a non-perturbative, Lagrangian-level formulation of the double copy in two spacetime dimensions. Our results elucidate the field theoretic underpinnings of the double copy in a broad class of scalar theories which can include masses and higher-dimension operators. An immediate corollary is the amplitudes-level double copy at all orders in perturbation theory. Applied to certain integrable models, the double copy defines an isomorphism between Lax connections, Wilson lines, and infinite towers of conserved currents. We also implement the double copy at the level of non-perturbative classical solutions, both analytically and numerically, and present a generalization of the double copy map that includes a fixed tower of higher-dimension corrections given by the Moyal algebra.