论文标题
签名图的顶点 - 隔离的平均欧拉 - 基因
The average Euler-genus of the vertex-amalgamation of signed graphs
论文作者
论文摘要
在本文中,我们首先概括了一个定理,以计算通过给定切口集的图形嵌入的面孔数量[S. S.斯塔尔,译。阿米尔。数学。 Soc。 259(1980),129--145]到所有表面。然后,我们扩展了stahl的边界,用于图形的顶点 - 隔离的平均属[S. Stahl,离散数学。 142(1995),235--245]签名图。
In this paper, we first generalize a theorem for counting the number of faces of an oriented embedding of a graph that passing through a given cut-edge set [S. Stahl, Trans. Amer. Math. Soc. 259 (1980), 129--145] to all surfaces. Then we extend Stahl's bounds for the average genus of the vertex-amalgamation of graphs [S. Stahl, Discrete Math. 142 (1995), 235--245] to signed graphs.