论文标题
基于流的主动学习,在非平稳环境中验证延迟
Stream-based Active Learning with Verification Latency in Non-stationary Environments
论文作者
论文摘要
数据流分类是机器学习领域的重要问题。由于数据的非平稳性质,其中基础分布会随着时间的流逝而变化(概念漂移),因此该模型需要不断适应新的数据统计信息。基于流的主动学习(AL)方法通过交互性地查询人类专家以在预算有限的预算内为最新样本提供新的数据标签来解决此问题。现有的AL策略假设标签可以立即可用,而在现实情况下,专家需要时间来提供查询标签(验证延迟),而当请求的标签到达时,它们可能不再相关。在本文中,我们研究了在AL方法上存在概念漂移的情况下,有限,时变和未知验证延迟的影响。我们提出了繁殖(PR),这是一种独立的延迟效用估计器,它也预测了所请求但尚不清楚的标签。此外,我们提出了一种依赖漂移的动态预算策略,该策略在检测到的漂移后使用标签预算的可变分布。彻底的实验评估,包括合成和现实世界的非平稳数据集,以及验证延迟和预算的不同设置。我们从经验上表明,所提出的方法始终优于最先进的方法。此外,我们证明,随着时间的及时预算分配,可以提高AL策略的性能,而不会增加整体标签预算。
Data stream classification is an important problem in the field of machine learning. Due to the non-stationary nature of the data where the underlying distribution changes over time (concept drift), the model needs to continuously adapt to new data statistics. Stream-based Active Learning (AL) approaches address this problem by interactively querying a human expert to provide new data labels for the most recent samples, within a limited budget. Existing AL strategies assume that labels are immediately available, while in a real-world scenario the expert requires time to provide a queried label (verification latency), and by the time the requested labels arrive they may not be relevant anymore. In this article, we investigate the influence of finite, time-variable, and unknown verification delay, in the presence of concept drift on AL approaches. We propose PRopagate (PR), a latency independent utility estimator which also predicts the requested, but not yet known, labels. Furthermore, we propose a drift-dependent dynamic budget strategy, which uses a variable distribution of the labelling budget over time, after a detected drift. Thorough experimental evaluation, with both synthetic and real-world non-stationary datasets, and different settings of verification latency and budget are conducted and analyzed. We empirically show that the proposed method consistently outperforms the state-of-the-art. Additionally, we demonstrate that with variable budget allocation in time, it is possible to boost the performance of AL strategies, without increasing the overall labeling budget.