论文标题

部分可观测时空混沌系统的无模型预测

Monadicity of Non-deterministic Logical Matrices is Undecidable

论文作者

Filipe, Pedro, Caleiro, Carlos, Marcelino, Sérgio

论文摘要

非确定性逻辑矩阵(解释为多功能函数)的概念保留了许多基于逻辑矩阵(将连接词解释为功能)的传统语义的良好特性,同时证明了更广泛的逻辑类别,并且证明了逻辑上的多个逻辑类别,并且在最近的组合效果中具有果断性。至关重要的是,当有限的非确定性矩阵满足单声道(可以通过一元公式分开不同的真实价值)时,就可以自动产生诱导逻辑的公理化。此外,所得的结石是分析性的,可以启用算法证明搜索和符号反模型生成。 对于有限的(确定性)矩阵,众所周知,检查monadicity是可以决定的。我们表明,在存在非确定性的情况下,该财产变得不可决定。结果,我们得出的结论是,没有用于计算在给定有限NMATRIX中表达的所有多函数集的算法。通过减少确定性反机器的停止问题,获得了不确定性结果。

The notion of non-deterministic logical matrix (where connectives are interpreted as multi-functions) preserves many good properties of traditional semantics based on logical matrices (where connectives are interpreted as functions) whilst finitely characterizing a much wider class of logics, and has proven to be decisive in a myriad of recent compositional results in logic. Crucially, when a finite non-deterministic matrix satisfies monadicity (distinct truth-values can be separated by unary formulas) one can automatically produce an axiomatization of the induced logic. Furthermore, the resulting calculi are analytical and enable algorithmic proof-search and symbolic counter-model generation. For finite (deterministic) matrices it is well known that checking monadicity is decidable. We show that, in the presence of non-determinism, the property becomes undecidable. As a consequence, we conclude that there is no algorithm for computing the set of all multi-functions expressible in a given finite Nmatrix. The undecidability result is obtained by reduction from the halting problem for deterministic counter machines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源