论文标题

部分可观测时空混沌系统的无模型预测

A Three-phase Augmented Classifiers Chain Approach Based on Co-occurrence Analysis for Multi-Label Classification

论文作者

Pengfei, Gao, Dedi, Lai, Lijiao, Zhao, Yue, Liang, Yinglong, Ma

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

As a very popular multi-label classification method, Classifiers Chain has recently been widely applied to many multi-label classification tasks. However, existing Classifier Chains methods are difficult to model and exploit the underlying dependency in the label space, and often suffer from the problems of poorly ordered chain and error propagation. In this paper, we present a three-phase augmented Classifier Chains approach based on co-occurrence analysis for multi-label classification. First, we propose a co-occurrence matrix method to model the underlying correlations between a label and its precedents and further determine the head labels of a chain. Second, we propose two augmented strategies of optimizing the order of labels of a chain to approximate the underlying label correlations in label space, including Greedy Order Classifier Chain and Trigram Order Classifier Chain. Extensive experiments were made over six benchmark datasets, and the experimental results show that the proposed augmented CC approaches can significantly improve the performance of multi-label classification in comparison with CC and its popular variants of Classifier Chains, in particular maintaining lower computational costs while achieving superior performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源