论文标题
奇怪的深色物质孤立的富含气体的超底层星系
The Odd Dark Matter Halos of Isolated Gas-rich Ultradiffuse Galaxies
论文作者
论文摘要
我们分析了分离且富含气体的七个超底层星系(UDGS)的圆速度曲线。假设这些UDG的暗物质光环具有navarro-frenk-frenk-white(NFW)密度曲线或读取密度曲线(允许恒定密度核心),则在某些情况下,推断的晕圈浓度在系统上系统地低于宇宙学的中位数,即使低至$ -0.6 $ dex(大约$5σ$)。或者,可以使用大约比几千2千克的Radii缩放的密度曲线来获得类似的拟合。两种解决方案都需要半径,其中光环圆速度峰($ r _ {\ rm max} $)要比中位期望大得多。令人惊讶的是,与高斯期望相比,我们发现在Illustristng Dark-Master的模拟中,我们发现如此大的$ r _ {\ rm max} $ HALOS的过多。与类似质量的中位光晕相比,这些光环迟到,并且具有更高的旋转。这些晚期的光环中最极端的内部密度高于其NFW对应物,导致$ \ sim 1/r^2 $密度曲线。但是,我们样品中的两个良好分辨的UDG非常喜欢中心的深色暗物质密度,而不是模拟的暗物质密度。与Illustristng流体动力学模拟相比,我们还发现既有足够低的圆形速度和足够高的光环质量以适应测量值的张力。我们的结果表明,富含气体的UDGS对星系形成模型带来了重大挑战。
We analyze circular velocity profiles of seven ultradiffuse galaxies (UDGs) that are isolated and gas-rich. Assuming that the dark matter halos of these UDGs have a Navarro-Frenk-White (NFW) density profile or a Read density profile (which allows for constant-density cores), the inferred halo concentrations are systematically lower than the cosmological median, even as low as $-0.6$ dex (about $5σ$ away) in some cases. Alternatively, similar fits can be obtained with a density profile that scales roughly as $1/r^2$ for radii larger than a few kiloparsecs. Both solutions require the radius where the halo circular velocity peaks ($R_{\rm max}$) to be much larger than the median expectation. Surprisingly, we find an overabundance of such large-$R_{\rm max}$ halos in the IllustrisTNG dark-matter-only simulations compared to the Gaussian expectation. These halos form late and have higher spins compared to median halos of similar masses. The inner densities of the most extreme among these late-forming halos are higher than their NFW counterparts, leading to a $\sim 1/r^2$ density profile. However, the two well-resolved UDGs in our sample strongly prefer lower dark matter densities in the center than the simulated ones. Comparing to IllustrisTNG hydrodynamical simulations, we also find a tension in getting both low enough circular velocities and high enough halo mass to accommodate the measurements. Our results indicate that the gas-rich UDGs present a significant challenge for galaxy formation models.