论文标题

对游戏态对多粒子衰减的概括

Generalization of Gamow states to multi-particle decay

论文作者

Schonfeld, Jonathan F.

论文摘要

对于单粒子的非依次量子力学,游戏态是带有复杂特征值的哈密顿量的特征功能。游戏状态不可正常化;它们依赖于通常的乘数exp(-iet),并在不断扩大的波前添加了截止。 Gamow国家已被用来扩展核壳模型。它们是在可稳定的状态下,因为可正常的本征函数与结合状态。在本文中,我们概括了gamow状态以腐烂的粒子腐烂。我们得出了扩展波前的确切形式,即使对于相对论传出颗粒也是如此。在非相关性极限中,我们得出了多粒子游戏态对系统传播器的贡献的确切形式(Green的功能)。

For single-particle nonrelativistic quantum mechanics, a Gamow state is an eigenfunction of the Hamiltonian with complex eigenvalue. Gamow states are not normalizable; they depend on time via the usual multiplier exp(-iEt) supplemented by a cutoff at an expanding wavefront. Gamow states have been used to extend nuclear shell models; they are to metastable states as normalizable eigenfunctions are to bound states. In this paper we generalize Gamow states to decays with multiple outgoing particles. We derive the exact form of the expanding wavefront, even for relativistic outgoing particles. In the non-relativistic limit we derive the exact form of the multi-particle Gamow state contribution to the system propagator (Green's function).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源