论文标题

辐射恒星的时间方程

Lie Symmetries, Painlevé analysis and global dynamics for the temporal equation of radiating stars

论文作者

Leon, Genly, Govender, Megandhren, Paliathanasis, Andronikos

论文摘要

我们通过使用三种强大的方法来分析非线性微分方程的辐射恒星的时间方程。具体而言,我们研究了给定的主普通微分方程的全局动力学,以了解各种初始条件的溶液的演变,并研究渐近解决方案的存在。此外,借助Lie理论的应用,我们可以减少主微分方程的顺序,同时确定确切的相似性解决方案。最后,主方程具有painlevé的特性,这意味着可以通过洛朗扩张来表达分析解决方案。

We study the temporal equation of radiating stars by using three powerful methods for the analysis of nonlinear differential equations. Specifically, we investigate the global dynamics for the given master ordinary differential equation to understand the evolution of solutions for various initial conditions as also to investigate the existence of asymptotic solutions. Moreover, with the application of Lie's theory, we can reduce the order of the master differential equation, while an exact similarity solution is determined. Finally, the master equation possesses the Painlevé property, which means that the analytic solution can be expressed in terms of a Laurent expansion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源