论文标题
气体积聚可以驱动星系中的湍流
Gas Accretion Can Drive Turbulence in Galaxies
论文作者
论文摘要
星系中湍流的驱动与反馈,恒星形成,流出,积聚和磁盘中的径向运输的物理密切相关。因此,星系中气体的速度分散为这些过程提供了有希望的观察窗口。但是,这些机制中每种机制的相对重要性仍然存在争议。在这项工作中,我们重新审视了银河尺度上的湍流是由积聚气体材料在磁盘上的直接影响所驱动的。我们使用高分辨率宇宙学磁流体动力学模拟TNG50在Illustristng中的磁盘状星系中测量这种效果。我们使用只有少数Myr的时间节奏的拉格朗日示踪剂颗粒来识别吸积和其他事件,例如磁盘内的恒星形成,流出和运动。粒子到达磁盘时的能量是通过将事件堆叠在事件发生前和之后的时间堆中来测量的。每个事件的平均效果是通过拟合动力学和湍流能量的显式模型作为磁盘中时间的函数来衡量星系的。这些测量值通过测量磁盘不同的Annuli与其他时间序列的湍流能量的互相关,并搜索因果关系信号,即跨零时间滞后的交叉相关中的不对称信号。我们发现,即使在此$ \ sim 5 \ times 10^{9} m_ \ odot $ odot $ stellar sellar mass Galaxy中,增生也有助于大规模的湍流动能。将这一发现推送到一系列的星系群体中,我们发现有在某些制度中,直接吸收的能量可能会主导湍流的能量预算,尤其是在磁盘郊区,星系,比银河系较大的星系,而在RedShift $ \ sim 2 $中。
The driving of turbulence in galaxies is deeply connected with the physics of feedback, star formation, outflows, accretion, and radial transport in disks. The velocity dispersion of gas in galaxies therefore offers a promising observational window into these processes. However, the relative importance of each of these mechanisms remains controversial. In this work we revisit the possibility that turbulence on galactic scales is driven by the direct impact of accreting gaseous material on the disk. We measure this effect in a disk-like star-forming galaxy in IllustrisTNG, using the high-resolution cosmological magnetohydrodynamical simulation TNG50. We employ Lagrangian tracer particles with a high time cadence of only a few Myr to identify accretion and other events, such as star formation, outflows, and movement within the disk. The energies of particles as they arrive in the disk are measured by stacking the events in bins of time before and after the event. The average effect of each event is measured on the galaxy by fitting explicit models for the kinetic and turbulent energies as a function of time in the disk. These measurements are corroborated by measuring the cross-correlation of the turbulent energy in the different annuli of the disk with other time series, and searching for signals of causality, i.e. asymmetries in the cross-correlation across zero time lag. We find that accretion contributes to the large-scale turbulent kinetic energy even if it is not the dominant driver of turbulence in this $\sim 5 \times 10^{9} M_\odot$ stellar mass galaxy. Extrapolating this finding to a range of galaxy masses, we find that there are regimes where energy from direct accretion may dominate the turbulent energy budget, particularly in disk outskirts, galaxies less massive than the Milky Way, and at redshift $\sim 2$.