论文标题

supproular最大化持续了矩阵交集

Submodular Maximization Subject to Matroid Intersection on the Fly

论文作者

Feldman, Moran, Norouzi-Fard, Ashkan, Svensson, Ola, Zenklusen, Rico

论文摘要

尽管对数据流模型中的亚辅导最大化感兴趣,但我们的知识仍然存在很大的差距,尤其是在处理多个约束时。在这项工作中,我们在数据流模型中受到$ K $ Matroid约束的约束,几乎弥合了suppodular最大化的几个基本差距。我们提出了一个新的硬度结果,表明需要$ k $中的超级多项式内存才能获得$ o(k / \ log k)$ - 近似。这意味着先前算法的最佳性。对于相同的设置,我们表明,通过维护一组尺寸独立于流尺寸的元素,可以获得一个恒定因子近似。最后,对于二分匹配约束,是一种众所周知的Matroid相交的特殊情况,我们提出了一种新技术,以获得比先前方法获得的硬度界限要强大的硬度界限。是否在此环境中可能存在2美元的AppRximation,而仅知道复杂性理论硬度为$ 1.91 $。我们证明无条件硬度为2.69美元。

Despite a surge of interest in submodular maximization in the data stream model, there remain significant gaps in our knowledge about what can be achieved in this setting, especially when dealing with multiple constraints. In this work, we nearly close several basic gaps in submodular maximization subject to $k$ matroid constraints in the data stream model. We present a new hardness result showing that super polynomial memory in $k$ is needed to obtain an $o(k / \log k)$-approximation. This implies near optimality of prior algorithms. For the same setting, we show that one can nevertheless obtain a constant-factor approximation by maintaining a set of elements whose size is independent of the stream size. Finally, for bipartite matching constraints, a well-known special case of matroid intersection, we present a new technique to obtain hardness bounds that are significantly stronger than those obtained with prior approaches. Prior results left it open whether a $2$-approximation may exist in this setting, and only a complexity-theoretic hardness of $1.91$ was known. We prove an unconditional hardness of $2.69$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源