论文标题

计算Hecke代数的$ p $ - 适用基础

Calculating the $p$-canonical basis of Hecke algebras

论文作者

Gibson, Joel, Jensen, Lars Thorge, Williamson, Geordie

论文摘要

我们描述了一种用于计算Hecke代数的$ p $的算法,或它的一种反球形模块。该算法不直接在Hecke类别中运行,而是在半模拟类别中使用Hecke类别的忠实嵌入来构建一个“模型”,以实现其形态空间的不可塑性对象和基础。在此半神经类别中,对象是Coxeter组元素的序列,并且形态在分数字段上是(稀疏)矩阵,使其适合计算。该策略适用于任何基本领域的全部Hecke类别,但是在反球形案例中,我们必须通过$ \ Mathbb {z} _ {(p)} $使用$ \ Mathbb {z} _ {(p)} $,并使用IDEMTOTENT LIPTTING参数来推论特征性$ P> 0 $的领域的结果。我们还描述了一种不太复杂的算法,它更适合有限群体。我们在岩浆计算机代数系统中提供了两种算法的完整实现。

We describe an algorithm for computing the $p$-canonical basis of the Hecke algebra, or one of its antispherical modules. The algorithm does not operate in the Hecke category directly, but rather uses a faithful embedding of the Hecke category inside a semisimple category to build a "model" for indecomposable objects and bases of their morphism spaces. Inside this semisimple category, objects are sequences of Coxeter group elements, and morphisms are (sparse) matrices over a fraction field, making it quite amenable to computations. This strategy works for the full Hecke category over any base field, but in the antispherical case we must instead work over $\mathbb{Z}_{(p)}$ and use an idempotent lifting argument to deduce the result for a field of characteristic $p > 0$. We also describe a less sophisticated algorithm which is much more suited to the case of finite groups. We provide complete implementations of both algorithms in the MAGMA computer algebra system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源