论文标题
在保留分数平均曲率流量的体积下球的稳定性
Stability of the ball under volume preserving fractional mean curvature flow
论文作者
论文摘要
我们考虑了几乎球形集的体积约束的分数平均曲率流,并证明长期存在和渐近收敛到球。该结果特别适用于在全局存在的假设下凸出初始数据。同样,我们显示了定期图的分数平均曲率流量的指数收敛到一个常数。
We consider the volume constrained fractional mean curvature flow of a nearly spherical set, and prove long time existence and asymptotic convergence to a ball. The result applies in particular to convex initial data, under the assumption of global existence. Similarly, we show exponential convergence to a constant for the fractional mean curvature flow of a periodic graph.