论文标题

图形的单色顶点隔间

Monochromatic vertex-disconnection of graphs

论文作者

Fu, Miao, Zhang, Yuqin

论文摘要

令G为顶点图。如果s的顶点用相同的颜色颜色,则g的顶点切割s被称为单色顶点切割。如果g的任何两个非附属顶点具有单色的单色顶点,则将图G分为单色。 g的单色顶点 - 隔间数,用MVD(g)表示,是用于使G单色的最大颜色数量。在本文中,研究了图参数之间的连接:MVD(G),连接性和块分解。我们确定了一些众所周知的图表的MVD(G)值,然后在N-5 \ leq MVD(G)\ Leq N和G的所有块中表征G,而G的所有块都是最小的2个连接的三角形图。对于任何K,我们获得具有MVD(G)= K的图G的最大尺寸。此外,我们研究了MVD(G)的Erdős-Gallai型结果,并完全解决了它们。最后,我们提出了一种计算MVD(G)的算法,并给出G的MVD颜色。

Let G be a vertex-colored graph. A vertex cut S of G is called a monochromatic vertex cut if the vertices of S are colored with the same color. A graph G is monochromatically vertex-disconnected if any two nonadjacent vertices of G has a monochromatic vertex cut separating them. The monochromatic vertex-disconnection number of G, denoted by mvd(G), is the maximum number of colors that are used to make G monochromatically vertex-disconnected. In this paper, the connection between the graph parameters are studied: mvd(G), connectivity and block decomposition. We determine the value of mvd(G) for some well known graphs, and then characterize G when n-5\leq mvd(G)\leq n and all blocks of G are minimally 2-connected triangle-free graphs. We obtain the maximum size of a graph G with mvd(G)=k for any k. Furthermore, we study the Erdős-Gallai-type results for mvd(G), and completely solve them. Finally, we propose an algorithm to compute mvd(G) and give an mvd-coloring of G.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源