论文标题
在Humilière完成的支撑和$γ$ - 涂料套件中
On the supports in the Humilière completion and $γ$-coisotropic sets
论文作者
论文摘要
Lagrangian submanifolds或Hamiltonian地图的集合光谱度量可以用于定义这些空间的完成。对于此类完成的元素,我们定义了其$γ$ -Support。我们还定义了$γ$ coisotropic set的概念,并证明$γ$ - 硫磺必须为$γ$ -Coisotropic toghether,并具有许多$γ$ -Support和$γ$ -Coisotropic套件的属性。我们在完成过程中举例说明了Lagrangians的示例,并提供了大$γ$ -Support,我们研究了具有小$γ$ support的那些(称为“常规Lagrangians”)。我们将$γ$ - 二共糖的概念与其他各向同性概念进行了比较。
The symplectic spectral metric on the set of Lagrangian submanifolds or Hamiltonian maps can be used to define a completion of these spaces. For an element of such a completion, we define its $γ$-support. We also define the notion of $γ$-coisotropic set, and prove that a $γ$-support must be $γ$-coisotropic toghether with many properties of the $γ$-support and $γ$-coisotropic sets. We give examples of Lagrangians in the completion having large $γ$-support and we study those (called "regular Lagrangians") having small $γ$-support. We compare the notion of $γ$-coisotropy with other notions of isotropy.