论文标题
多注射空间和相关矢量束上的单子
Monads on multiprojective spaces and associated vector bundles
论文作者
论文摘要
在本文中,我们确定了射击空间的笛卡尔产品上的单元。我们构建了与Monads相关的向量束$ \ mathbb {p}^{a_1} \ times \ mathbb {p}^{a_1} \ times \ times \ mathbb {p}^{a_2} \ times \ ma thbb {p}^{a_2} \ times \ cdots \ times \ times \ mathbb {p}^{a_n} \ times \ times \ mathbb {p}^{a_n} $。一旦存在$ x $的单子,下一个自然的问题是与这些单子相关的共同体学向量捆绑包是否简单。我们研究了这些矢量捆绑包在$ x $上相关,并证明了它们的稳定性和简单性。
In this paper we establish the existence of monads on Cartesian products of projective spaces. We construct vector bundles associated to monads on $\mathbb{P}^{a_1}\times\mathbb{P}^{a_1}\times\mathbb{P}^{a_2}\times\mathbb{P}^{a_2}\times\cdots\times\mathbb{P}^{a_n}\times\mathbb{P}^{a_n}$. Once the monad on $X$ exists the next natural question is if the cohomology vector bundle associated to these monads are simple or not. We study these vector bundles associated to monads on $X$ and prove their stability and simplicity.