论文标题
跨过渡磁盘腔的气温结构
Gas temperature structure across transition disk cavities
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
[Abridged] Most disks observed at high angular resolution show substructures. Knowledge about the gas surface density and temperature is essential to understand these. The aim of this work is to constrain the gas temperature and surface density in two transition disks: LkCa15 and HD 169142. We use new ALMA observations of the $^{13}$CO $J=6-5$ transition together with archival $J=2-1$ data of $^{12}$CO, $^{13}$CO and C$^{18}$O to observationally constrain the gas temperature and surface density. Furthermore, we use the thermochemical code DALI to model the temperature and density structure of a typical transition disk. The $6-5/2-1$ line ratio in LkCa15 constrains the gas temperature in the emitting layers inside the dust cavity to be up to 65 K, warmer than in the outer disk at 20-30 K. For the HD 169142, the peak brightness temperature constrains the gas in the dust cavity of HD 169142 to be 170 K, whereas that in the outer disk is only 100 K. Models also show that a more luminous central star, a lower abundance of PAHs and the absence of a dusty inner disk increase the temperature of the emitting layers and hence the line ratio in the gas cavity. The gas column density in the LkCa15 dust cavity drops by a factor >2 compared to the outer disk, with an additional drop of an order of magnitude inside the gas cavity at 10 AU. In the case of HD 169142, the gas column density drops by a factor of 200$-$500 inside the gas cavity, which could be due to a massive companion of several M$_{\mathrm{J}}$. The broad dust-depleted gas region from 10-68 AU for LkCa15 may imply several lower mass planets. This work demonstrates that knowledge of the gas temperature is important to determine the gas surface density and thus whether planets, and if so what kind of planets, are the most likely carving the dust cavities.