论文标题
扭曲的几何相干状态在所有维环量子重力中:ii。 Ehrenfest属性
Twisted geometry coherent states in all dimensional loop quantum gravity: II. Ehrenfest Property
论文作者
论文摘要
在本系列文章的前面论文中,我们在所有维回路量子重力中构建了扭曲的几何相干状态,并确定了它们的峰值性能。在本文中,我们建立了这些连贯状态的“ eHrenfest属性”,这些态被用扭曲的几何参数标记。我们的意思是,我们的意思是,基本运算符的多项式的期望值以及不是基本操作员的多项式函数的运算符,以$ \ hbar $中的零序列为零,是相应的经典函数在扭曲的几何场处的相应经典函数的值,在扭曲的几何空间点处,相互态的状态达到了顶峰。
In the preceding paper of this series of articles we constructed the twisted geometry coherent states in all dimensional loop quantum gravity and established their peakedness properties. In this paper we establish the "Ehrenfest property" of these coherent states which are labelled by the twisted geometry parameters. By this we mean that the expectation values of the polynomials of the elementary operators as well as the operators which are not polynomial functions of the elementary operators, reproduce, to zeroth order in $\hbar$, the values of the corresponding classical functions at the twisted geometry space point where the coherent state is peaked.