论文标题
人工石墨烯的绝热量子算法
Adiabatic quantum algorithm for artificial graphene
论文作者
论文摘要
我们设计了一种量子电路算法来解决人造石墨烯的基态和地面能。该算法实现了从纯紧密结合的哈密顿量到包括动力学,旋转轨道和库仑的术语的绝热进化。使用高斯州的制备有效地获得了初始状态,而地面能量的读数被组织成17组测量值,而与问题的大小无关。相应的量子电路的总深度与系统大小多一级缩放。对算法进行了完整的模拟,并为具有多达四个六六角形的晶格获得了地面能量。对于具有一个和两个六六角形的系统,我们的结果通过精确的对角度进行了基准测试。对于较大的系统,我们使用确切的状态向量和近似矩阵产品状态模拟技术。后者允许系统地将精度与内存进行权衡,从而解决较大的系统。我们分析绝热和小动物误差,并在有限的准确性下为最佳时期和时间离散化提供了估计。在大型系统的情况下,我们还研究了近似误差。
We devise a quantum-circuit algorithm to solve the ground state and ground energy of artificial graphene. The algorithm implements a Trotterized adiabatic evolution from a purely tight-binding Hamiltonian to one including kinetic, spin-orbit and Coulomb terms. The initial state is obtained efficiently using Gaussian-state preparation, while the readout of the ground energy is organized into seventeen sets of measurements, irrespective of the size of the problem. The total depth of the corresponding quantum circuit scales polynomially with the size of the system. A full simulation of the algorithm is performed and ground energies are obtained for lattices with up to four hexagons. Our results are benchmarked with exact diagonalization for systems with one and two hexagons. For larger systems we use the exact statevector and approximate matrix product state simulation techniques. The latter allows to systematically trade off precision with memory and therefore to tackle larger systems. We analyze adiabatic and Trotterization errors, providing estimates for optimal periods and time discretizations given a finite accuracy. In the case of large systems we also study approximation errors.