论文标题

顶点操作员代数和拓扑扭曲的Chern-simons理论

Vertex Operator Algebras and Topologically Twisted Chern-Simons-Matter Theories

论文作者

Garner, Niklas

论文摘要

我们考虑了几种拓扑扭曲的Chern-Simons-Matter理论,并提出了边界VOA,其模块类别应建模3D批量的线路运算符的类别。我们的主要示例来自拓扑$ a $和$ b $ twist of Exotic $ \ Mathcal {n} = 4 $ Chern-Simons-Matter of Gaiotto-Witten的理论,但我们表明,有一个拓扑“ $ a $ a $ twist”,用于更大的$ \ neqal {n} n} \ neq4 $ theq4 $ the theeories。我们说明了这一新的理论的一个特殊示例,该理论承认$ p = 2 $ singlet voa $ \ mathfrak {m}(2)$在其边界上$,并就其与$ψ\ to \ infty $的关系发表评论。

We consider several topologically twisted Chern-Simons-matter theories and propose boundary VOAs whose module categories should model the category of line operators of the 3d bulk. Our main examples come from the topological $A$ and $B$ twists of the exotic $\mathcal{N}=4$ Chern-Simons-matter theories of Gaiotto-Witten, but we show that there is a topological "$A$-twist" for a much larger class of $\mathcal{N}\neq4$ theories. We illustrate a particular example of this new class of theories that admits the $p=2$ singlet VOA $\mathfrak{M}(2)$ on its boundary and comment on its relation to the $ψ\to \infty$ limit of the Gaiotto-Rap{\v c}{á}k corner VOA $Y_{1,1,0}[ψ]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源