论文标题

在摩擦接口处滑动统计的缩放理论

Scaling theory for the statistics of slip at frictional interfaces

论文作者

de Geus, Tom W. J., Wyart, Matthieu

论文摘要

在摩擦界面上滑动是通过间歇事件发生的。了解这些事件是如何成核,可以自发传播或停止的,仍然是地震科学和摩擦学的中心挑战。在没有障碍的情况下,速率和状态方法预测在某些应力$σ^*$下的成核长度,裂纹可以传播。在这里,我们主张一个平坦的界面,即疾病是与此描述相关的扰动。我们证明了滑移的分布为何包含两个部分:与“雪崩”相对应的PowerLaw,以及系统跨系统``裂缝''事件的“窄”分布。我们得出了雪崩的新型缩放关系,包括压力下降与滑动事件的空间扩展之间的关系。我们计算了截止长度,超过该截止时间,无法通过混乱阻止雪崩,导致系统跨系统的断裂,并在最小的摩擦接口模型中成功测试了这些预测。

Slip at a frictional interface occurs via intermittent events. Understanding how these events are nucleated, can propagate, or stop spontaneously remains a challenge, central to earthquake science and tribology. In the absence of disorder, rate-and-state approaches predict a diverging nucleation length at some stress $σ^*$, beyond which cracks can propagate. Here we argue for a flat interface that disorder is a relevant perturbation to this description. We justify why the distribution of slip contains two parts: a powerlaw corresponding to `avalanches', and a `narrow' distribution of system-spanning `fracture' events. We derive novel scaling relations for avalanches, including a relation between the stress drop and the spatial extension of a slip event. We compute the cut-off length beyond which avalanches cannot be stopped by disorder, leading to a system-spanning fracture, and successfully test these predictions in a minimal model of frictional interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源