论文标题

静电波波的物理状态非线性相互作用是由电子束在背景等离子体中传播的电子光束产生的

Physical Regimes of Electrostatic Wave-Wave nonlinear interactions generated by an Electron Beam Propagating in a Background Plasma

论文作者

Sun, Haomin, Chen, Jian, Kaganovich, Igor D., Khrabrov, Alexander, Sydorenko, Dmytro

论文摘要

长期以来,电子束等离子体相互作用一直是引起人们极大兴趣的话题。尽管准线性(QL)理论和弱湍流(WT)理论取得了成功,但它们的有效性受到足够致密模式频谱和小波幅度的要求而受到限制。在本文中,我们通过进行大量高分辨率的二维(2D)粒子粒子(PIC)模拟并使用分析理论,通过冷血浆通过冷等离子体传播的热阴极发出的单能电子束进行了广泛研究。我们确认,由于众所周知的波浪捕捞机制,两流不稳定性的初始阶段已饱和。进一步的进化是由于强波波过程而发生的。我们表明,在等离子体和梁参数的参数空间中,可以将梁的相互作用分为四个不同的物理状态。详细分析了不同制度之间的差异。我们第一次确定了强烈的Langmuir湍流中的新制度,我们称之为电子模量不稳定性(EMI),可以创造出比离子等离子体频率更快的局部Langmuir波数据包。离子在最初的生长阶段没有时间对EMI做出反应。在较长的时间尺度上,浮力球的作用会产生非常强的离子密度扰动,最终由于较强的离子密度扰动而停止了梁铂波的相互作用。因此,在这种EMI状态下,电子束系相互作用发生在周期性(间歇性)过程中。梁被海浪强烈散射,Langmuir波谱得到了显着拓宽,这又产生了大量电子的强加热。在强湍流方向上观察到了产生的kappa分布和波能谱E^2(k)〜k^(-5)。

Electron-beam plasma interaction has long been a topic of great interest. Despite the success of Quasi-Linear (QL) theory and Weak Turbulence (WT) theory, their validities are limited by the requirement of sufficiently dense mode spectrum and small wave amplitude. In this paper, we extensively studied the collective processes of a mono-energetic electron beam emitted from a thermionic cathode propagating through a cold plasma by performing a large number of high resolution two-dimensional (2D) particle-in-cell (PIC) simulations and using analytical theories. We confirm that the initial stage of two-stream instability is saturated due to well-known wave-trapping mechanism. Further evolution occurs due to strong wave-wave nonlinear processes. We show that the beam-plasma interaction can be classified into four different physical regimes in the parameter space for the plasma and beam parameters. The differences between the different regimes are analyzed in detail. For the first time, we identified a new regime in strong Langmuir turbulence featured by what we call Electron Modulational Instability (EMI) that could create a local Langmuir wave packet growing faster than the ion plasma frequency. Ions do not have time to respond to EMI in the initial growing stage. On a longer timescale, the action of the ponderomotive force produces very strong ion density perturbations, and eventually the beam-plasma wave interaction stops being resonant due to strong ion density perturbations. Consequently, in this EMI regime, electron beam-plasma interaction occurs in a periodic (intermittent) process. The beams are strongly scattered by waves, and the Langmuir wave spectrum is significantly broadened, which in turn gives rise to strong heating of bulk electrons. A resulting kappa distribution and a wave-energy spectrum, E^2 (k)~k^(-5), are observed in the strong turbulent regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源