论文标题

Ultravista SN调查发现的两年的光学和NIR观察结果30901

Two years of optical and NIR observations of the superluminous supernova UID 30901 discovered by the UltraVISTA SN survey

论文作者

Hueichapán, Emilio D., V., Carlos Contreras, Cartier, Regis, Lira, Paulina, Sanchez-Saez, Paula, Milvang-Jensen, Bo, Fynbo, Johan P. U., Anderson, Joseph P., Hamuy, Mario

论文摘要

我们介绍了UID 30901的深度光学和近红外光度法,这是一种在Ultravista调查中发现的超浮肿超新星(SLSN)。通过安装在VIRCAM($ YJHK_ {s} $)上的Vircam($ YJHK_ {s} $)上的观测值,该观察台上安装在Vista望远镜上,Blanco望远镜上的Decam($ Griz $)和Subaru Hyper Suprime-Cam(HSC; $ Grizy $)。这些多频段观测值包括+700天,使UID 30901成为迄今为止SLSNE的最佳光学图表之一。在深HST F814W图像中检测到UID 30901的主机星系,其幅度为$ 27.3 \ pm 0.2 $。尽管SN或其主机银河系不存在光谱,但我们根据$ z = 0.37 $的分析进行分析,该分析基于在7 kpc的预计距离处发现的可能的宿主星系的光度红移。计算将黑体拟合到观测值,半径,温度和降压光曲线。我们发现$ 5.4 \ pm 0.34 \ times 10^{43} $ erg s $^{ - 1} $的最大降压光度。观察到超过600天的光曲线中的扁平板,讨论了几个可能的原因。我们发现观察值清楚地利用了SLSN类型I,并且可以将磁盘的损失和磁盘的旋转量和数据与数据进行比较。我们发现,磁体模型具有以下参数非常适合观察值:磁场$ b = 1.4 \ pm 0.3 \ pm 0.3 \ times 10^{14} \ g $,$ p = 6.0 \ pm 0.1 \ ms 0.1 \ ms $和ejecta mass $ m_ $ m_ {ej} = 11.9^= 11.9^= 11.9^{+4.8} $}

We present deep optical and near-infrared photometry of UID 30901, a superluminous supernova (SLSN) discovered during the UltraVISTA survey. The observations were obtained with VIRCAM ($YJHK_{s}$) mounted on the VISTA telescope, DECam ($griz$) on the Blanco telescope, and SUBARU Hyper Suprime-Cam (HSC; $grizy$). These multi-band observations comprise +700 days making UID 30901 one of the best photometrically followed SLSNe to date. The host galaxy of UID 30901 is detected in a deep HST F814W image with an AB magnitude of $27.3 \pm 0.2$. While no spectra exist for the SN or its host galaxy, we perform our analysis assuming $z = 0.37$, based on the photometric redshift of a possible host galaxy found at a projected distance of 7 kpc. Fitting a blackbody to the observations, the radius, temperature, and bolometric light curve are computed. We find a maximum bolometric luminosity of $5.4 \pm 0.34 \times 10^{43}$ erg s$^{-1}$. A flattening in the light curve beyond 600 days is observed and several possible causes are discussed. We find the observations to clearly favour a SLSN type I, and plausible power sources such as the radioactive decay of $^{56}$Ni and the spin-down of a magnetar are compared to the data. We find that the magnetar model yields a good fit to the observations with the following parameters: a magnetic field $B = 1.4 \pm 0.3 \times 10^{14} \ G$, spin period of $P = 6.0 \pm 0.1 \ ms$ and ejecta mass $M_{ej} = 11.9^{+4.8}_{-6.4} M_{\odot}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源