论文标题

多项式的同时原始根值

Simultaneous Primitive Root Values Of Polynomials

论文作者

Carella, N. A.

论文摘要

令$ z \ ne \ pm1,w^2 $为固定整数,让$ f(t)\ ne g(t)^2 $为整数上的固定多项式。结果表明,Primes $ p \ geq 2 $的子集因此,$ z $和$ f(z)$是一对同时的原始根部模量$ p $ p $在一组素数中具有非零密度。 The same analysis generalizes to \textit{admissible} $k$-tuple of polynomials $z$, $f_1(z)$, $f_2(z), \ldots$, $f_k(z)$, such that $f_i(z)\ne g_i(z)^2$, and $k\ll \log p$ is a small integer.

Let $z\ne \pm1,w^2$ be a fixed integer, and let $f(t)\ne g(t)^2$ be a fixed polynomial over the integers. It is shown that the subset of primes $p\geq 2$ such that $z$ and $f(z)$ is a pair of simultaneous primitive roots modulo $p$ has nonzero density in the set of primes. The same analysis generalizes to \textit{admissible} $k$-tuple of polynomials $z$, $f_1(z)$, $f_2(z), \ldots$, $f_k(z)$, such that $f_i(z)\ne g_i(z)^2$, and $k\ll \log p$ is a small integer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源