论文标题
重新审查Stewart的定理:抑制规范$ \ pm 1 $假设
Stewart's Theorem revisited: suppressing the norm $\pm 1$ hypothesis
论文作者
论文摘要
令$γ$为代数数量$ 2 $,而不是团结的根源。在本说明中,我们表明存在一个主要的理想$ \ mathfrak {p} $ of $ \ mathbb {q}(γ)$满足$ν_\ mathfrak {p}(γ^n-1)\ ge 1 $,因此,合理的prime p $ prination prime p $ nesdlying $ \ m athfrak $ \ mathfrak $ \ mathfrak $ \ pan $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $
Let $γ$ be an algebraic number of degree $2$ and not a root of unity. In this note we show that there exists a prime ideal $\mathfrak{p}$ of $\mathbb{Q}(γ)$ satisfying $ν_\mathfrak{p}(γ^n-1)\ge 1$, such that the rational prime $p$ underlying $\mathfrak{p}$ grows quicker than $n$.