论文标题

三个manifolds具有非网状捏合RICCI曲率

Three-manifolds with non-negatively pinched Ricci curvature

论文作者

Lee, Man-Chun, Topping, Peter M.

论文摘要

我们表明,每个完全不固定的三个月式的三个月均具有非固定的RICCI曲率,都可以在所有正时进行完整的RICCI流动溶液,并具有尺度不变的曲率衰减和夹紧的保留。结合Lott和Deruelle-Schulze-Simon的最新工作,证明了汉密尔顿的捏造猜想而没有其他假设。

We show that every complete non-compact three-manifold with non-negatively pinched Ricci curvature admits a complete Ricci flow solution for all positive time, with scale-invariant curvature decay and preservation of pinching. Combining with recent work of Lott and Deruelle-Schulze-Simon gives a proof of Hamilton's pinching conjecture without additional hypotheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源