论文标题
三个manifolds具有非网状捏合RICCI曲率
Three-manifolds with non-negatively pinched Ricci curvature
论文作者
论文摘要
我们表明,每个完全不固定的三个月式的三个月均具有非固定的RICCI曲率,都可以在所有正时进行完整的RICCI流动溶液,并具有尺度不变的曲率衰减和夹紧的保留。结合Lott和Deruelle-Schulze-Simon的最新工作,证明了汉密尔顿的捏造猜想而没有其他假设。
We show that every complete non-compact three-manifold with non-negatively pinched Ricci curvature admits a complete Ricci flow solution for all positive time, with scale-invariant curvature decay and preservation of pinching. Combining with recent work of Lott and Deruelle-Schulze-Simon gives a proof of Hamilton's pinching conjecture without additional hypotheses.