论文标题
希尔伯特(Hilbert)堕落基因座
Hilbert squares of degeneracy loci
论文作者
论文摘要
令$ s $为矢量束的形态的第一个变性基因座,对应于$ \ mathbb {p}^s $中的线性形式的一般矩阵。我们证明,在某些阳性条件下,其Hilbert Square $ \ Mathrm {Hilb}^2(s)$对硕士的产物的不可还原均匀矢量束的全球部分的零位点是同构的。我们的结构涉及自然相关的Fano品种,以及对同构的明确描述。
Let $S$ be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in $\mathbb{P}^s$. We prove that, under certain positivity conditions, its Hilbert square $\mathrm{Hilb}^2(S)$ is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.