论文标题

原始随机引力波背景各向异性:内形式和应用

Primordial Stochastic Gravitational Wave Background Anisotropies: in-in Formalization and Applications

论文作者

Dimastrogiovanni, Ema, Fasiello, Matteo, Pinol, Lucas

论文摘要

众所周知,标量(张量)的原始非高斯(张量)张量张量,支持非平凡的挤压成分,可以在随机重力波背景中诱导各向异性。在这种情况下,我们首次使用用于宇宙学相关功能的形式主义,从而得出了这种各向异性的明确形式。在说明了一般方法并将其用于最小的单场慢速案例之后,我们将其应用于多场型号,同时提供树级别和一环示例。首先,由于通货膨胀期间存在额外的自旋2场,我们与以前的各向异性结果接触。其次,我们在所谓的超olid膨胀的背景下计算了1循环标量调整的三点函数。相应的引力波各向异性在一个重力信号上诱导,该信号可能足够大以进行检测。

Primordial non-Gaussianities of the scalar(tensor)-tensor-tensor type supporting a non-trivial squeezed component are known to induce anisotropies in the stochastic gravitational wave background. We derive the explicit form of such anisotropies by making use, for the first time in this context, of the in-in formalism for cosmological correlation functions. After illustrating the general method and using it for the minimal single-field slow-roll case, we apply it to multi-field models, providing both a tree-level and a one-loop example. First, we make contact with previous results on anisotropies due to the presence of an extra spin-2 field during inflation. Secondly, we calculate the 1-loop scalar-tensor-tensor three-point function in the context of so-called supersolid inflation. The corresponding gravitational wave anisotropy is induced atop a gravitational signal that may be sufficiently large for detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源