论文标题
在空间自适应的在线预测定期功能
Spatially Adaptive Online Prediction of Piecewise Regular Functions
论文作者
论文摘要
我们考虑在线设置中估算分段常规功能的问题,即,数据顺序到达,我们的任务是在下一个揭示点上使用过去预测的可用数据来预测真实函数的值。我们提出了一个新近开发的在线学习算法的适当修改版本,称为“睡眠专家聚合算法”。我们表明,该估计器满足域的所有本地区域同时满足Oracle风险界限。作为在此提出的专家聚合算法的具体实例化,我们研究了在线平均聚合和在线线性回归聚合算法,其中专家对应于该域的一组二元子段。所得算法接近样本量中的线性时间。我们在固定设计设置中估算分段多项式和有限变化功能类的背景下,专门关注这些在线算法的性能。在这种情况下,我们为这些估计器获得的同时甲骨文风险范围即使在批处理设置中也提供了新的和改进的(在某些方面),并且无法用于最先进的批处理学习估算器。
We consider the problem of estimating piecewise regular functions in an online setting, i.e., the data arrive sequentially and at any round our task is to predict the value of the true function at the next revealed point using the available data from past predictions. We propose a suitably modified version of a recently developed online learning algorithm called the sleeping experts aggregation algorithm. We show that this estimator satisfies oracle risk bounds simultaneously for all local regions of the domain. As concrete instantiations of the expert aggregation algorithm proposed here, we study an online mean aggregation and an online linear regression aggregation algorithm where experts correspond to the set of dyadic subrectangles of the domain. The resulting algorithms are near linear time computable in the sample size. We specifically focus on the performance of these online algorithms in the context of estimating piecewise polynomial and bounded variation function classes in the fixed design setup. The simultaneous oracle risk bounds we obtain for these estimators in this context provide new and improved (in certain aspects) guarantees even in the batch setting and are not available for the state of the art batch learning estimators.