论文标题
用于流体结构相互作用问题的基于样条的时空有限元方法,重点是完全封闭的域
Spline-Based Space-Time Finite Element Approach for Fluid-Structure Interaction Problems With a Focus on Fully Enclosed Domains
论文作者
论文摘要
非均匀的理性B-Spline(NURB)表面通常在计算机辅助设计(CAD)工具中用于表示几何对象。当使用等几何分析(IGA)时,可以直接使用此类NURBS几何形状进行数值分析。然而,分析流体流需要复杂的三维几何形状来表示流动域。使用NURBS定义此类体积域的参数化可能具有挑战性,并且仍然是IGA社区中持续的话题。使用最近开发的NURBS增强有限元方法(NEFEM),在标准有限元方法中使用了NURB的有利几何特征。这是通过使用NURBS几何形状本身增强触及边界的元素来实现的。在当前的工作中,引入了NEFEM的新变化,适用于三维时空有限元公式。所提出的方法利用了新的映射,该映射导致适用于流体结构相互作用(FSI)的非牙龈公式。通过将方法与IgA公式相结合,以解决FSI问题的强耦合分区框架中,这证明了这一点。该框架通过单个NURB产生了流体结构界面的完全基于样条的表示。流体结构界面处的耦合条件是通过Robin-Neumann型耦合方案实现的。当考虑完全由Dirichlet的问题和弯曲的问题中考虑不可压缩的流体时,该方案特别有用,因为它满足了耦合过程中每个步骤的流体的不可压缩性约束。使用一系列两维基准问题证明了引入基于样条的时空有限元方法的准确性和性能及其在提议的耦合FSI框架中的使用。
Non-Uniform Rational B-Spline (NURBS) surfaces are commonly used within Computer-Aided Design (CAD) tools to represent geometric objects. When using isogeometric analysis (IGA), it is possible to use such NURBS geometries for numerical analysis directly. Analyzing fluid flows, however, requires complex three-dimensional geometries to represent flow domains. Defining a parametrization of such volumetric domains using NURBS can be challenging and is still an ongoing topic in the IGA community. With the recently developed NURBS-enhanced finite element method (NEFEM), the favorable geometric characteristics of NURBS are used within a standard finite element method. This is achieved by enhancing the elements touching the boundary by using the NURBS geometry itself. In the current work, a new variation of NEFEM is introduced, which is suitable for three-dimensional space-time finite element formulations. The proposed method makes use of a new mapping which results in a non-Cartesian formulation suitable for fluid-structure interaction (FSI). This is demonstrated by combining the method with an IGA formulation in a strongly-coupled partitioned framework for solving FSI problems. The framework yields a fully spline-based representation of the fluid-structure interface through a single NURBS. The coupling conditions at the fluid-structure interface are enforced through a Robin-Neumann type coupling scheme. This scheme is particularly useful when considering incompressible fluids in fully Dirichlet-bounded and curved problems, as it satisfies the incompressibility constraint on the fluid for each step within the coupling procedure. The accuracy and performance of the introduced spline-based space-time finite element approach and its use within the proposed coupled FSI framework are demonstrated using a series of two- and three-dimensional benchmark problems.