论文标题

Euler对称完整的交叉点在投影空间

Euler-symmetric complete intersection in projective space

论文作者

Luo, Zhijun

论文摘要

Baohua Fu和Jun-Muk Hwang在2020年推出的Euler-Memmetric投射品种是非重型的投射品种,他们承认许多$ \ Mathbb {C}^{\ times} $ - Euler Type的动作。它们是准同质的,并且在一般情况下由它们的基本形式决定。在本文中,我们研究了Euler对称的投射空间中的完整交集。事实证明,这些品种是超分析的完整交叉点,而在一般点,第二个基本形式的基座再次是一个完整的交叉点。

Euler-symmetric projective varieties, introduced by Baohua Fu and Jun-Muk Hwang in 2020, are nondegenerate projective varieties admitting many $\mathbb{C}^{\times}$-actions of Euler type. They are quasi-homogeneous and uniquely determined by their fundamental forms at a general point. In this paper, we study complete intersections in projective spaces which are Euler-symmetric. It is proven that such varieties are complete intersections of hyperquadrics and the base locus of the second fundamental form at a general point is again a complete intersection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源