论文标题
Euler对称完整的交叉点在投影空间
Euler-symmetric complete intersection in projective space
论文作者
论文摘要
Baohua Fu和Jun-Muk Hwang在2020年推出的Euler-Memmetric投射品种是非重型的投射品种,他们承认许多$ \ Mathbb {C}^{\ times} $ - Euler Type的动作。它们是准同质的,并且在一般情况下由它们的基本形式决定。在本文中,我们研究了Euler对称的投射空间中的完整交集。事实证明,这些品种是超分析的完整交叉点,而在一般点,第二个基本形式的基座再次是一个完整的交叉点。
Euler-symmetric projective varieties, introduced by Baohua Fu and Jun-Muk Hwang in 2020, are nondegenerate projective varieties admitting many $\mathbb{C}^{\times}$-actions of Euler type. They are quasi-homogeneous and uniquely determined by their fundamental forms at a general point. In this paper, we study complete intersections in projective spaces which are Euler-symmetric. It is proven that such varieties are complete intersections of hyperquadrics and the base locus of the second fundamental form at a general point is again a complete intersection.