论文标题
使用高斯混合物密度网络的概率参数估计:应用于X射线反射率数据曲线拟合
Probabilistic Parameter Estimation Using a Gaussian Mixture Density Network: Application to X-ray Reflectivity Data Curve Fitting
论文作者
论文摘要
X射线反射率(XRR)广泛用于薄膜结构分析,XRR数据分析涉及最小化从描述薄膜结构的模型参数计算出的XRR曲线之间的差异。该分析需要一定时间,因为它涉及许多不可避免的迭代。但是,在反复分析相似样品的情况下,最近引入的人工神经网络(ANN)方法可以大大减少分析时间。在这里,我们使用混合密度网络(MDN)来证明XRR数据的分析,该数据可以实现概率预测,同时保持ANN的优势。首先,在假设输出参数的单峰概率分布的假设下,训练有素的MDN可以估计最佳拟合参数,同时估算与最佳拟合参数的误差栏相对应的置信区间(CI)。以这种方式获得的CI类似于使用Neumann过程获得的CI,这是一种众所周知的统计方法。接下来,在输出参数的多模式分布的情况下,MDN方法为每个参数提供了几种可能的解决方案。一种无监督的机器学习方法用于按照高概率顺序群集可能的参数集。通过检查以这种方式获得的参数集的候选物来确定真实值,可以帮助解决与散射数据相关的固有的反问题。
X-ray reflectivity (XRR) is widely used for thin-film structure analysis, and XRR data analysis involves minimizing the difference between an XRR curve calculated from model parameters describing the thin-film structure. This analysis takes a certain amount of time because it involves many unavoidable iterations. However, the recently introduced artificial neural network (ANN) method can dramatically reduce the analysis time in the case of repeated analyses of similar samples. Here, we demonstrate the analysis of XRR data using a mixture density network (MDN), which enables probabilistic prediction while maintaining the advantages of an ANN. First, under the assumption of a unimodal probability distribution of the output parameter, the trained MDN can estimate the best-fit parameter and, at the same time, estimate the confidence interval (CI) corresponding to the error bar of the best-fit parameter. The CI obtained in this manner is similar to that obtained using the Neumann process, a well-known statistical method. Next, the MDN method provides several possible solutions for each parameter in the case of a multimodal distribution of the output parameters. An unsupervised machine learning method is used to cluster possible parameter sets in order of high probability. Determining the true value by examining the candidates of the parameter sets obtained in this manner can help solve the inherent inverse problem associated with scattering data.