论文标题
Moiré诱导的基于CVD的小角度扭曲双层石墨烯中的运输
Moiré-Induced Transport in CVD-Based Small-Angle Twisted Bilayer Graphene
论文作者
论文摘要
为了实现2D互助设备的适用潜力,可扩展的合成和组装技术需要在接口清洁和扭曲角度同质性方面满足严格的要求。在这里,我们表明,由分离的CVD生长石墨烯单晶组装的小角度扭曲的双层石墨烯可以确保由设备尺度 - 均匀的Moireé电位确定的高质量传输特性。通过低温双门控磁转运,我们证明了$ 2.4^\ Circ $ twist的超晶格的标志,包括可调的层耦合,降低费米速度的可调状态,较大的Fermi速度,较大的层间相互层和密度与密度无关的Brown-Zak振荡。对这些Moiré诱导的电运输特征的观察为基础研究建立了基于CVD的扭曲双层石墨烯,以替代“撕裂和堆栈”去角质片,同时作为未来大型组装的概念验证。
To realize the applicative potential of 2D twistronic devices, scalable synthesis and assembly techniques need to meet stringent requirements in terms of interface cleanness and twist-angle homogeneity. Here, we show that small-angle twisted bilayer graphene assembled from separated CVD-grown graphene single-crystals can ensure high-quality transport properties, determined by a device-scale-uniform moireé potential. Via low-temperature dual-gated magnetotransport, we demonstrate the hallmarks of a $2.4^\circ$ -twisted superlattice, including tunable regimes of interlayer coupling, reduced Fermi velocity, large interlayer capacitance, and density-independent Brown-Zak oscillations. The observation of these moiré-induced electrical transport features establishes CVD-based twisted bilayer graphene as an alternative to 'tear-and-stack' exfoliated flakes for fundamental studies, while serving as a proof-of-concept for future large-scale assembly.