论文标题
部分可观测时空混沌系统的无模型预测
On Bloch seminorm of finite Blaschke products in the unit disk
论文作者
论文摘要
我们证明,对于任何有限的blaschke产品$ W = b(z)$中的任何有限的b(z)$,$ w $上的相应的riemann表面 - 飞机包含半径为$ 0.5 $的单声盘。此外,它包含一个带有径向缝隙的单个单个磁盘。我们将此结果应用于有限的蓝皮产品的Bloch eminorm的通用急剧较低估计值。
We prove that, for any finite Blaschke product $w=B(z)$ in the unit disk, the corresponding Riemann surface over the $w$--plane contains a one-sheeted disk of the radius $0.5$. Moreover, it contains a unit one-sheeted disk with a radial slit. We apply this result to obtain a universal sharp lower estimate of the Bloch seminorm for finite Blaschke products.