论文标题
来自多个Zeta-Star值的洗牌产品的加权总和公式
Weighted Sum Formulas from Shuffle Products of Multiple Zeta-star Values
论文作者
论文摘要
在本文中,我们将执行$ z _-(n)= \ sum_ {a+b = m}(-1)^{b} pary的混洗产品ζ^{\ star}(\ {1 \}^{c},d+2)$,$ m+n = p $。所得的洗牌关系是\ begin {equation*}给出的加权总和公式 \ frac {(p+1)(p+2)} {2}ζ(p+4) = \ sum_ {m+n = p} \ sum_ {| \boldsymbolα| = p+3} ζ(α_{0},α_{1},\ ldots,α_{m},α__{m+1} +1) \ sum_ {a+b+c = m} \ bigl(w _ {\boldsymbolα}(a,b,c) + w _ {\boldsymbolα}(a,b,c = 0) +w _ {\boldsymbolα}(a = 0,b,c)+w _ {\boldsymbolα}(a = 0,b = m,c = 0)\ bigr),\ end {equation {qore {qore*} $ w _ {\boldsymbolα}(a,b,b,c)(a,b,c) (1-2^{1-α_{a+b+1}}} \ \)$,带有$σ(r)= \ sum_ {j = 0}^{r}α__{j} $。
In this paper, we are going to perform the shuffle products of $Z_-(n) = \sum_{a+b=m} (-1)^{b} ζ(\{1\}^{a},b+2)$ and $Z_+^\star(n) = \sum_{c+d=n} ζ^{\star}(\{1\}^{c},d+2)$ with $m+n = p$. The resulted shuffle relation is a weighted sum formula given by \begin{equation*} \frac{(p+1)(p+2)}{2} ζ(p+4) =\sum_{m+n=p} \sum_{|\boldsymbolα|=p+3} ζ(α_{0}, α_{1}, \ldots, α_{m}, α_{m+1}+1) \sum_{a+b+c=m} \Bigl( W_{\boldsymbolα}(a,b,c) + W_{\boldsymbolα}(a,b,c=0) + W_{\boldsymbolα}(a=0,b,c) + W_{\boldsymbolα}(a=0,b=m,c=0) \Bigr), \end{equation*} where $W_{\boldsymbolα}(a,b,c) = 2^{σ(a+b+1)-σ(a)-(b+1)} (1-2^{1-α_{a+b+1}}\ \ )$, with $σ(r) = \sum_{j=0}^{r} α_{j}$.