论文标题
改善了CR领域的高阶Sobolev不平等现象
Improved higher-order Sobolev inequalities on CR sphere
论文作者
论文摘要
我们在$ s^{2n+1} $上改善了高阶Sobolev不平等现象,在卷元素的高阶矩消失下。作为应用程序,我们提供了新的直接证明CR不变的高阶Sobolev不平等现象的最小化器分类。本着同样的精神,我们证明了GJMS操作员对一般CR歧管的不平等现象,并在$ c^{2k}(n)$中获得最小化的cr yamabe-type问题时,当$ c^{2k}(n)$时,当$ y__k(y_k(y_k y_k(n)<y__k(n)<y__k(\ y__k(\ yth)<y__k(\ nathbbbbbbbb))
We improve higher-order CR Sobolev inequalities on $S^{2n+1}$ under the vanishing of higher order moments of the volume element. As an application, we give a new and direct proof of the classification of minimizers of the CR invariant higher-order Sobolev inequalities. In the same spirit, we prove almost sharp Sobolev inequalities for GJMS operators to general CR manifolds, and obtain the existence of minimizers in $C^{2k}(N)$ of higher-order CR Yamabe-type problems when $Y_k(N)<Y_k(\mathbb{H}^n)$.