论文标题
阻塞理论和级别$ n $椭圆属
Obstruction theory and the level $n$ elliptic genus
论文作者
论文摘要
Given a height $\leq 2$ Landweber exact $\mathbb{E}_\infty$-ring $E$ whose homotopy is concentrated in even degrees, we show that any complex orientation of $E$ which satisfies the Ando criterion admits a unique lift to an $\mathbb{E}_\infty$-complex orientation $\mathrm{MU} \to E $。结果,我们提供了一个简短的证据,即$ n $椭圆属属属于$ \ mathbb {e} _ \ infty $ -complex方向$ \ mathrm {mu} \ to \ mathrm {tmf} _1(tmf} _1(n)$ n $ n \ n $ n \ geq 2 $。
Given a height $\leq 2$ Landweber exact $\mathbb{E}_\infty$-ring $E$ whose homotopy is concentrated in even degrees, we show that any complex orientation of $E$ which satisfies the Ando criterion admits a unique lift to an $\mathbb{E}_\infty$-complex orientation $\mathrm{MU} \to E$. As a consequence, we give a short proof that the level $n$ elliptic genus lifts uniquely to an $\mathbb{E}_\infty$-complex orientation $\mathrm{MU} \to \mathrm{tmf}_1 (n)$ for all $n \geq 2$.