论文标题

随机噪声强制强迫运输扩散方程法的非唯一性

Non-uniqueness in law of transport-diffusion equation forced by random noise

论文作者

Koley, Ujjwal, Yamazaki, Kazuo

论文摘要

我们考虑由三种类型的随机噪声强制强制的传输扩散方程:加法,线性乘法$ \ hat {\ mathrm {o}} $的解释以及Stratonovich的解释中的传输。通过凸集成,通过概率设置修改,我们证明了sobolev空间中具有空间规律性的无差异矢量场的存在,并相应地解决了列布斯格空间中的空间规律性的传输扩散方程,因此在法律中无唯一性在法律中,在全球范围内全球范围的法律级别。

We consider a transport-diffusion equation forced by random noise of three types: additive, linear multiplicative in It$\hat{\mathrm{o}}$'s interpretation, and transport in Stratonovich's interpretation. Via convex integration modified to probabilistic setting, we prove existence of a divergence-free vector field with spatial regularity in Sobolev space and corresponding solution to a transport-diffusion equation with spatial regularity in Lebesgue space, and consequently non-uniqueness in law at the level of probabilistically strong solutions globally in time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源