论文标题

从下方的下方函数下方的限制通过整个函数模块的对数

The restriction from below of the subharmonic function by the logarithm of the module of entire function

论文作者

Khabibullin, B. N.

论文摘要

令$ u \ not \ equiv - \ infty $为复杂平面$ \ mathbb c $上的次谐波函数。然后,对于任何功能,$ r \ colon \ mathbb c \ to(0,1] $满足条件$$ \ inf_ {z {z \ in \ mathbb c} \ frac {\ ln r(z)} {\ ln r(z)} {\ ln(2+ | z | | | | |)}> - \ iftty,$ f \ $ f \ $ f \ $ f \ $ | f(z)| \ leq \ frac {1} {2π} \ int_0^{2π} u(z+r(z)表格$ \ ln | f(z)| \ leq u(z)$的不平等在\ in \ mathbb c \ setminus e $上的所有点$ z \,其中特殊的集合$ e $在$ d $ d $ d $ d $ d $ d $ d $ d $ d $ e $的$ e $中,带有可变的radius $ r $。

Let $u\not\equiv -\infty$ be a subharmonic function on the complex plane $\mathbb C$. Then for any function $r\colon\mathbb C\to (0,1]$ satisfying the condition $$\inf_{z\in\mathbb C}\frac{\ln r(z)}{\ln(2+|z|)}>-\infty,$$ there is an entire function $f\not\equiv 0$ such that $$ \ln |f(z)|\leq \frac{1}{2π}\int_0^{2π}u(z+r(z)e^{iθ})\,{\mathrm d}θ\quad\text{for all $z\in\mathbb C$.}$$ A similar result is established for subharmonic functions of finite order with inequalities of the form $\ln|f(z)|\leq u(z)$ at all points $z\in\mathbb C\setminus E$, where the exceptional set $E$ is small in terms of $d$-dimensional Hausdorff content of $E$ with variable radius $r$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源