论文标题

基于Koopman的神经Lyapunov功能

Koopman-Based Neural Lyapunov Functions for General Attractors

论文作者

Deka, Shankar A., Valle, Alonso M., Tomlin, Claire J.

论文摘要

在过去的十年中,Koopman光谱理论已成为动态系统分析和控制的强大工具。在本文中,我们展示了如何利用使用神经网络估算Koopman不变子空间的最新数据驱动技术,以提取基础系统的Lyapunov证书。在我们的工作中,我们特别关注具有极限周期的系统,仅仅是一个孤立的平衡点,并使用Koopman eigenfunctions有效地将候选lyapunov函数参数化,以在某些(未知)吸引者动力学下构建前向不变的集合。此外,当动力学是多项式的,并且当神经网络被多项式替换为我们方法中功能近似器的选择时,人们可以进一步利用方形计划和/或非线性程序来产生可证明正确的Lyapunov证书。在这种多项式情况下,与直接制定和解决方案总和优化问题相比,我们基于Koopman的构建Lyapunov函数的方法使用的决策变量明显更少。

Koopman spectral theory has grown in the past decade as a powerful tool for dynamical systems analysis and control. In this paper, we show how recent data-driven techniques for estimating Koopman-Invariant subspaces with neural networks can be leveraged to extract Lyapunov certificates for the underlying system. In our work, we specifically focus on systems with a limit-cycle, beyond just an isolated equilibrium point, and use Koopman eigenfunctions to efficiently parameterize candidate Lyapunov functions to construct forward-invariant sets under some (unknown) attractor dynamics. Additionally, when the dynamics are polynomial and when neural networks are replaced by polynomials as a choice of function approximators in our approach, one can further leverage Sum-of-Squares programs and/or nonlinear programs to yield provably correct Lyapunov certificates. In such a polynomial case, our Koopman-based approach for constructing Lyapunov functions uses significantly fewer decision variables compared to directly formulating and solving a Sum-of-Squares optimization problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源