论文标题

运算符设计的一些概念方面,用于非亚伯晶格理论的量子模拟

Some Conceptual Aspects of Operator Design for Quantum Simulations of Non-Abelian Lattice Gauge Theories

论文作者

Ciavarella, Anthony, Klco, Natalie, Savage, Martin J.

论文摘要

在晶格量规理论的Kogut-susskind公式中,一组量子数位于每个链接的末端,以表征顶点 - 局部量规场。我们讨论了这些量子数在传播相关性和支撑纠缠中的作用,尽管操作员会(仅)(仅)部分访问每个顶点希尔伯特(Hilbert)空间,但仍能确保每个顶点保持规模不变。我们应用于量子模拟中消除顶点 - 本地希尔伯特空间的最新建议,我们描述了如何通过将最接近邻居控制的时间演化操作员的离域化生成所需的纠缠。这些杂交用Qudits或Qubit组织组织,交换经典操作员预处理以减少量子资源需求的减少,这些量子资源需求扩展了整个晶格量。

In the Kogut-Susskind formulation of lattice gauge theories, a set of quantum numbers resides at the ends of each link to characterize the vertex-local gauge field. We discuss the role of these quantum numbers in propagating correlations and supporting entanglement that ensures each vertex remains gauge invariant, despite time evolution induced by operators with (only) partial access to each vertex Hilbert space. Applied to recent proposals for eliminating vertex-local Hilbert spaces in quantum simulation, we describe how the required entanglement is generated via delocalization of the time evolution operator with nearest-neighbor controls. These hybridizations, organized with qudits or qubits, exchange classical operator preprocessing for reductions in quantum resource requirements that extend throughout the lattice volume.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源