论文标题
神经网络中的聚类单元:上游与下游信息
Clustering units in neural networks: upstream vs downstream information
论文作者
论文摘要
已经假设人造神经网络中某种形式的“模块化”结构应有助于学习,组成和泛化。但是,定义和量化模块性仍然是一个空旷的问题。我们将检测功能模块检测到检测相似功能单元的簇的问题。这就提出了一个问题,即是什么使两个单元在功能上相似。为此,我们考虑了两个广泛的方法家族:基于单位对输入(“上游”)的结构化变化的响应方式定义相似性的家庭,以及基于隐藏单位激活中的变化如何影响输出(“下游”)。我们进行了一项经验研究,以量化一系列超参数的简单进料,完全连接的网络的隐藏层表示模块。对于每个模型,我们使用各种上游和下游度量量化了每个层中隐藏单元之间的成对关联,然后使用网络科学中的已建立工具来最大化其“模块化得分”来将它们聚集。我们发现两个令人惊讶的结果:首先,辍学大大增加了模块化,而其他形式的重量正则化具有更适中的效果。其次,尽管我们观察到在上游方法和下游方法中通常对簇有很好的一致性,但关于这两个方法家族的群集分配几乎没有共识。这对代表学习具有重要意义,因为它表明找到反映输入结构的模块化表示(例如,分离)可能是学习反映输出中结构(例如组成性)的模块化表示的独特目标。
It has been hypothesized that some form of "modular" structure in artificial neural networks should be useful for learning, compositionality, and generalization. However, defining and quantifying modularity remains an open problem. We cast the problem of detecting functional modules into the problem of detecting clusters of similar-functioning units. This begs the question of what makes two units functionally similar. For this, we consider two broad families of methods: those that define similarity based on how units respond to structured variations in inputs ("upstream"), and those based on how variations in hidden unit activations affect outputs ("downstream"). We conduct an empirical study quantifying modularity of hidden layer representations of simple feedforward, fully connected networks, across a range of hyperparameters. For each model, we quantify pairwise associations between hidden units in each layer using a variety of both upstream and downstream measures, then cluster them by maximizing their "modularity score" using established tools from network science. We find two surprising results: first, dropout dramatically increased modularity, while other forms of weight regularization had more modest effects. Second, although we observe that there is usually good agreement about clusters within both upstream methods and downstream methods, there is little agreement about the cluster assignments across these two families of methods. This has important implications for representation-learning, as it suggests that finding modular representations that reflect structure in inputs (e.g. disentanglement) may be a distinct goal from learning modular representations that reflect structure in outputs (e.g. compositionality).