论文标题
一个均质的弯曲理论
A homogenized bending theory for prestrained plates
论文作者
论文摘要
Prestrain的存在可能会对细长结构的机械行为产生巨大影响。 prest的弹性板在平衡中显示出自发弯曲 - 一种使此类物体与活性和功能材料相关的特性。在本文中,我们研究了具有非纤维平衡形状的微观,可预层的板。我们的目标是了解可靠的微观结构的性质与机械平衡中板的整体形状之间的关系。为此,我们考虑了一个三维非线性弹性模型,该模型描述了占据厚度较小的域的周期性材料。我们考虑以变形梯度的乘法分解形式描述的空间周期性序列。通过同时均质化和降低尺寸,我们严格地得出有效的板模型,作为消失厚度和周期的γ限制。该极限具有具有新兴自发曲率项的非线性弯曲能的形式。弯曲模型的均质特性(弯曲刚度和自发曲率)的特征是纠正措施问题。对于模型复合材料 - 由各向同性材料组成的可预层层压板 - 我们研究了均质化特性对模型复合材料参数的依赖性。其次,我们研究了模型复合材料的参数与最小弯曲能的形状集之间的关系。我们的研究揭示了这些形状对复合参数的相当复杂的依赖性。
The presence of prestrain can have a tremendous effect on the mechanical behavior of slender structures. Prestrained elastic plates show spontaneous bending in equilibrium -- a property that makes such objects relevant for the fabrication of active and functional materials. In this paper we study microheterogeneous, prestrained plates that feature nonflat equilibrium shapes. Our goal is to understand the relation between the properties of the prestrained microstructure and the global shape of the plate in mechanical equilibrium. To this end, we consider a three-dimensional, nonlinear elasticity model that describes a periodic material that occupies a domain with small thickness. We consider a spatially periodic prestrain described in the form of a multiplicative decomposition of the deformation gradient. By simultaneous homogenization and dimension reduction, we rigorously derive an effective plate model as a Γ-limit for vanishing thickness and period. That limit has the form of a nonlinear bending energy with an emergent spontaneous curvature term. The homogenized properties of the bending model (bending stiffness and spontaneous curvature) are characterized by corrector problems. For a model composite -- a prestrained laminate composed of isotropic materials -- we investigate the dependence of the homogenized properties on the parameters of the model composite. Secondly, we investigate the relation between the parameters of the model composite and the set of shapes with minimal bending energy. Our study reveals a rather complex dependence of these shapes on the composite parameters.