论文标题

一种动态的方法,可以研究近距离流动的不稳定性

A dynamical approach to the study of instability near Couette flow

论文作者

Li, Hui, Masmoudi, Nader, Zhao, Weiren

论文摘要

在本文中,当扰动位于关键空间$ h^1_xl_y^2 $时,我们获得了带有小粘度的Navier-Stokes方程的Couette流的最佳不稳定性阈值。 More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size $ν^{\frac{1}{2}-δ_0}$ with any small $δ_0>0$, which implies that $ν^{\frac{1}{2}}$ is the sharp stability threshold.在我们的方法中,我们证明了瞬态指数生长,而无需提及特征值或伪谱。作为应用程序,对于附近近距离流的剪切流的线性化欧拉方程,我们提供了一种新工具来证明存在相应的雷利操作员的增长模式,并提供特征值的精确位置。

In this paper, we obtain the optimal instability threshold of the Couette flow for Navier-Stokes equations with small viscosity $ν>0$, when the perturbations are in the critical spaces $H^1_xL_y^2$. More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size $ν^{\frac{1}{2}-δ_0}$ with any small $δ_0>0$, which implies that $ν^{\frac{1}{2}}$ is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源