论文标题

不规则等级的模量空间在Riemann球体上两个抛物线束及其紧凑型

Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification

论文作者

Komyo, Arata, Loray, Frank, Saito, Masa-Hiko

论文摘要

在本文中,我们研究了Riemann Sphere上的等级2(准)抛物线束,具有有效的除数和这些模量空间。首先,当抛物线束接收不合规的奇异抛物线连接时,我们会考虑一个标准。其次,为了很好地对可抛物线束的模量空间进行良好的压缩,我们引入了抛物线束的概括,这称为精制的抛物线捆绑包。第三,我们讨论了精制抛物线束的稳定性条件,并定义了精制抛物线束的基本变换。最后,我们描述了当模量空间的尺寸为两个时,我们描述了精制抛物线束的模量空间。这些与一些弱的Del Pezzo表面的几何形状有关。

In this paper, we study rank 2 (quasi) parabolic bundles over the Riemann sphere with an effective divisor and these moduli spaces. First we consider a criterium when a parabolic bundle admits a unramified irregular singular parabolic connection. Second, to give a good compactification of the moduli space of semistable parabolic bundles, we introduce a generalization of parabolic bundles, which is called refined parabolic bundles. Third, we discuss a stability condition of refined parabolic bundles and define elementary transformations of the refined parabolic bundles. Finally, we describe the moduli spaces of refined parabolic bundles when the dimensions of the moduli spaces are two. These are related to geometry of some weak del Pezzo surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源