论文标题
与两参数量子代数相关的打结不变
The knot invariant associated to two-parameter quantum algebras
论文作者
论文摘要
使用偏斜配对,我们获得了$ \ Mathcal {r} $ - 两参数量子量子代数$ u_ {v,t} $的矩阵。我们进一步构造了一个严格的单体函数$ \ MATHCAL {t} $从缠结类别$ $(\ Mathrm {ota},\ otimes,\ emptySet)$(\ aterrm {modrm {mod},\ otimes,\ otimes,\ mathbb {q}(q}(q}(q}(v,v,t))$ ___ v,结果,$ \ Mathcal {t} $在关闭$ \ tilde $ \ tilde {l} $ of $ l $ of Type $(n,n)$的纠缠$ l $(n,n)$的量子结不变。
Using the skew-Hopf pairing, we obtain $\mathcal{R}$-matrix for the two-parameter quantum algebra $U_{v,t}$. We further construct a strict monoidal functor $\mathcal{T}$ from the tangle category $(\mathrm{OTa},\otimes, \emptyset)$ to the category $(\mathrm{Mod},\otimes, \mathbb{Q}(v,t))$ of $U_{v,t}$-modules . As a consequence, the quantum knot invariant of the tangle $L$ of type $(n,n)$ is obtained by the action of $\mathcal{T}$ on the closure $\tilde{L}$ of $L$.