论文标题

计数乘法近似值

Counting multiplicative approximations

论文作者

Chow, Sam, Technau, Niclas

论文摘要

著名的猜想(1930年)涉及通过同一分母的理性近似两个实数,从而倍增了错误。在鲜为人知的论文中,Wang and Yu(1981)建立了一个用于此类近似数量的渐近公式,几乎总是有效的。使用Aistleitner-Borda-hauke的定量Koukoulopoulos--maynard定理,以及由Bohr集合理论引起的界限,我们推断出了对问题的不均匀和光纤精致的预期数量级的下限。

A famous conjecture of Littlewood (c. 1930) concerns approximating two real numbers by rationals of the same denominator, multiplying the errors. In a lesser-known paper, Wang and Yu (1981) established an asymptotic formula for the number of such approximations, valid almost always. Using the quantitative Koukoulopoulos--Maynard theorem of Aistleitner--Borda--Hauke, together with bounds arising from the theory of Bohr sets, we deduce lower bounds of the expected order of magnitude for inhomogeneous and fibre refinements of the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源